SWAMI VIVEKANAND ACADEMY

Class - XII - Maths - Test Paper - Date: 24/12/2019

General Instructions:

- (i) All the questions are compulsory.
- (ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

Section 'A'

Q. 1-Q. 10 are multiple choice type questions. Select the correct option.

1.	Let $A = \{1, 2, 3\}$ and consider the re	lation $R =$	{(1, 1), (2,	2), (3, 3), (1, 2),	$(2,3)$ }.
	Then R is				. ,,	, .
	(-) C - : 1 - :		2 2			

- (a) reflexive but not symmetric
- (b) reflexive but not transitive
- (c) symmetric and transitive
- (d) neither symmetric, nor transitive
- 2. The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is

(a)
$$[1, 2]$$
 (b) $[-1, 1]$

(BI) 3.
$$\int \frac{x^9}{(4x^2+1)^6} dx$$
 is equal to

(a)
$$\frac{1}{5x} \left(4 + \frac{1}{x^2} \right)^{-5} + C$$
 (b) $\frac{1}{5} \left(4 + \frac{1}{x^2} \right)^{-5} + C$ (c) $\frac{1}{10x} (1+4)^{-5} + C$ (d) $\frac{1}{10} \left(\frac{1}{x^2} + 4 \right)^{-5} + C$

(c)
$$\frac{1}{10r}(1+4)^{-5}+C$$

(d)
$$\frac{1}{10} \left(\frac{1}{x^2} + 4 \right)^{-5} + C$$

(d) None of these

4. If A is a skew-symmetric matrix, then A^2 is

- (a) symmetric
- (b) skew symmetric

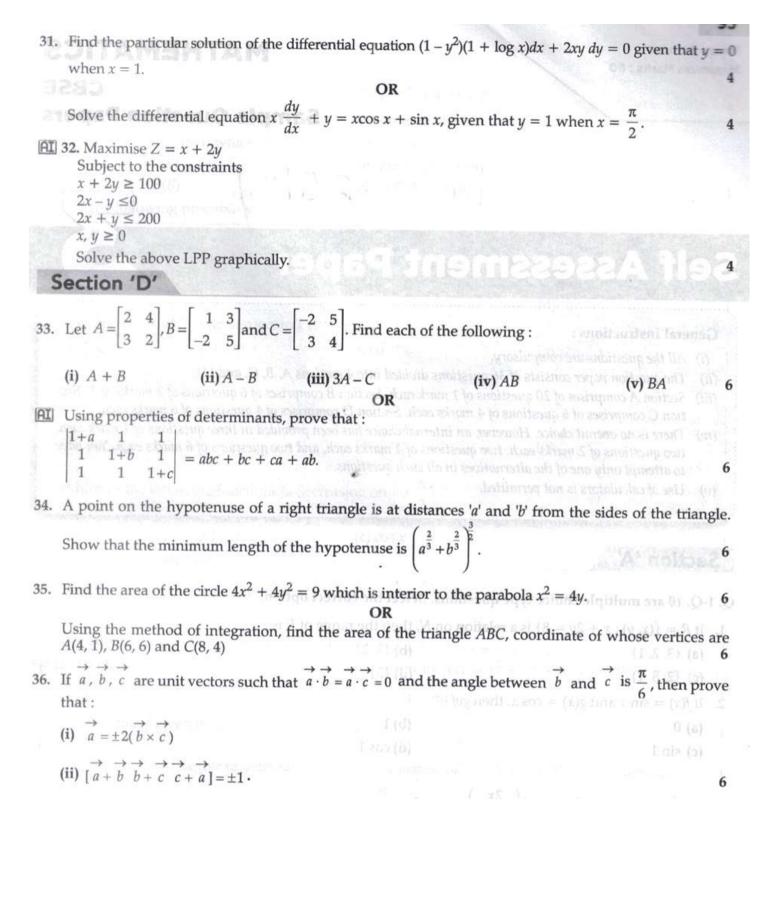
(c) [0, 1]

(d) $A^2 = B$

1

1

1


1

1

- 5. Which of the following is correct?
 - (a) Determinant is a square matrix.
 - (b) Determinant is a number associated to a matrix.
 - (c) Determinant is a number associated to a square matrix.
 - (d) None of these.

6	The funct	ion f(x)	$=e^{ x }$ is							
	(a) continu (b) continu	uous eve uous an	rywhere b d differen	ut not diff	ferentiabl	$e^{\cot x} = 0$		derivative of		
	(c) not con	ntinuou	s at $x = 0$		depend	nd Fare in				
	(d) none o	of these			nedon fi					
7	If $y = \log x$	$\frac{x}{(1+x)}$, t	hen $\frac{dy}{dx}$ is	equal to		OR				
	, x		thre theor	P manne	fe for the	o sulov si	H. SELTS E.	es e la la com		
	(a) $\frac{1+x^2}{(1+x)^2}$	278	(b) ${(1+}$	$(x)^2$	((c) $\frac{2x}{\left(1+x\right)^2}$		(d) $\frac{1}{x(1+x)}$		
8.	. The line y	= mx +	1 is a tang	gent to th	e curve j	$y^2 = 4x$, if t	the value of m	is		
	(a) 1		(b) 2		(c) 3	$\left(\frac{1}{2}\right)$	$\log(d) \left(\frac{1}{2}\right) \log(d)$.13
9.	$f(x) = x^x ha$	as a stati	onary poi	nt at						
	(a) $x = e$		4.	1		21.0	plunes	e between the	Find the ang	P
7			(b) $x = \frac{1}{2}$	6	(x = 1	01 + Apr 4 10	(d) $x = \sqrt{e}$		
10.	The probab	oility dis	tribution	of a discre	ete rando	om variabl	e X is given b	elow:		
	X	2	3	4	5	100				
	P(X)	5/k	7/k	9/k	11/k	John da				
	(a) 8		(b) 16	outula	(c)	32		(d) 48		
(Q.	11-Q. 15) Fil	I in the	blanks.					norm may 64 au		25
11.	The vector	equation	of the lir	e throug	h tho no	into /2 A	70 - 10 -	mounth molecule		
		-quado.	t of the m	ie unoug	ii die po		-/) and (1, -1,	6) is		- 1
	The costs of				(° ° °)	OR				
	The Cartesia	ın equat	ion of the	plane r.	(i+j-k)	= 2 is	1.mgrit	x 2 to toor		3
12.	In a LPP if t	he objec	tive funct	ion $Z = a$	x + by ha	as the same	e maximum v	alue on two co		611
		ion, ther	every po	int on the	e line seg	ment join	ing these two	alue on two co points give th	e same	r the
-	value.					OR		national medical	perpatritity	1
13.	If A and B a	re event	s such tha	t $P(A/B)$	= P(B/A)	, then				1
		ž 1								
14.	The value of	f J 1+cc	$\frac{1}{\cos 2x} dx$. is	equal to						1
		4								
(ΩT) 1	E The colum		1:00		du					
IDAI A	is. The soluti	on of th	e differen	tial equa	$\frac{dy}{dx} =$	= 2 ^{-y} is	ne jitas ikitoro			1
				arto Cerr	8-40	OP		$\frac{n-6}{4}$ could ad		
	The order ar	nd the de	egree of d	ifferentia	Loguatio	OK .		he lines		.82
	(43)2	12 /		a g mod	w equation	ni . ni moris .(6	Earn Du -	a been one as		1
	$\left(\frac{d^{2}y}{dx^{3}}\right) - 3\frac{d}{dx^{3}}$	$\frac{l^2y}{lx^2} + 2\left[$	$\left(\frac{dy}{dx}\right)$ is		26			ain 20) and y		V.
252	ST ST	ै	100							
(Q. 1	6-Q. 20) Ans	wer the	following	g questio	ns.				11 (at + 5a) 11	
16. I	Find the rate	of chan	ge of the	area of a	circle wit	th respect t	to its radius r,	when $r = 3$ cm	n	1
17. I	If $P(A) = \frac{6}{}$	P(B) =	5 and P	(A R) -	7	n find the	value of P(A	whot is to sout	Find the va	30
	11	150	11	(· · · · · ·) -	11 the	ii iiiia the	value of $P(A $	B).		1

18	8. Find the anti-derivative of $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$.	1
19	9. If $P(F) = 0.35$ and $P(E \cup F) = 0.85$ and E and F are independent events. Find $P(E)$ and $P(E)$	SI,
20		1
	$OR = \log \frac{x}{(1+x)}$ then $\frac{dy}{dx}$ is required as	77
	For the function $f(x) = x + \frac{1}{x}$, $x \in [1,3]$, the value of c for the mean value theorem.	1
	Section 'B'	
e.	the line of the state of the st	
21	Find the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$.	2
22	Find the angle between the planes	
	and $7x + 2y + 6z = 15$ $3x - y + 10z = 17.$	2
23	If $P(A) = \frac{2}{5}$, $P(B) = \frac{1}{3}$, $P(A \cap B) = \frac{1}{5}$, then find $P(\overline{A} / \overline{B})$.	2
	OR	
24.	Find an anti-derivative (or integral) of the function $\cos 3x$ by the method of inspection. Verify that the given function (explicit or implicit) is a solution of the corresponding different equation:	2 ntial
	$y = x^2 + 2x + C$: $y' - 2x - 2 = 0$ (i.e. a fixed and algorithm and and to not superior and $y' - 2x - 2 = 0$) and $y' - 2x - 2 = 0$ (i.e. a fixed and algorithm and and to not superior and $y' - 2x - 2 = 0$).	
25.	If $x = -9$ is a root of $\begin{bmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{bmatrix} = 0$, then find other two roots.	. 2
		2
26.	Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find probability that both the cards are black.	the
		2
	Let <i>E</i> and <i>F</i> be events with $P(E) = \frac{3}{5}$, $P(F) = \frac{3}{10}$ and $P(E \cap F) = \frac{1}{5}$. Are <i>E</i> and <i>F</i> independent?	2
5	Section 'C'	
27.	Find the value of the expression $\tan \left(\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2} \right)$ more upon lattered by with the more positive self. Et [191
20	5 * 7 2	4
29.	Show that the lines $\frac{3-x}{-4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = \frac{2y-8}{2} = \frac{z-5}{3}$ are coplanar. If $x = a$ ($2\theta - \sin 2\theta$) and $y = a(1 - \cos 2\theta)$, then find $\frac{dy}{dx}$ when $\theta = \frac{\pi}{3}$. OR	4
	OR (The last of the last of th	
	If $(x^2 + y^2) = xy$, then find $\frac{dy}{dx}$. The find $\frac{dy}{dx}$ is an entire to prove the find $\frac{dy}{dx}$.	4
30.	Find the values of x for which $y = [x(x-2)]^2$ is a strictly increasing function.	51
	(1 - 1) substitution = 26 stations = 28 d = 1600 ft	

